• как строить графики и прямую пропорциональность? 7 класс

Ответы 1

  • ропорциональности. Приводим примеры, когда прямая пропорциональность встречается в повседневной жизни. Также на этом уроке мы строим график прямой пропорциональности и выясняем, от чего зависит расположение графика в координатной плоскости.

    Конспект урока "Прямая пропорциональность и её график"

     

    Вопросы занятия:

    ·  ввести понятие «прямая пропорциональность»;

    ·  привести примеры, когда прямая пропорциональность встречается в повседневной жизни;

    ·  построить график прямой пропорциональности;

    ·  определить от чего зависит расположение графика в координатной плоскости.

    Материал урока

    Давайте рассмотрим пример.

    Пример.

    Обратите внимание, что если переменную t увеличить, например, в 2 раза, то и переменная H также увеличится в 2 раза. То есть:

    Также заметим, что зависимость высоты растения от времени его роста мы задали формулой вида:

    В рассматриваемом примере: k = 2,5, а переменная t является независимой.

    Сформулируем определение.

    Определение.

    С прямой пропорциональностью мы с вами часто встречаемся в повседневной жизни.

    Например,

    Или,

    Теперь давайте построим график прямой пропорциональности:

    Видим, что все точки лежат на одной прямой, которая проходит через начало координат. Для убедительности можем даже приложить линейку.

    Таким образом, можем сформулировать определение.

    Определение.

    Графиком прямой пропорциональности y = kx является прямая, проходящая через начало координат.

    Нам известно, что прямая определяется двумя точками. А значит, для построения графика функции y = kx достаточно указать любую точку графика этой функции, которая отличается от точки с координатами: (0, 0), то есть от начала координат.

    Например,

    А теперь посмотрите на рисунок, на котором изображены графики прямой пропорциональности.

    Обратите внимание, что графики тех функций, которые имеют положительный коэффициент k расположены в первой и третьей координатных четвертях, а которые имеют отрицательный коэффициент k – во второй и четвёртой четвертях. То есть расположение графика функции y = kx в координатной плоскости зависит от коэффициента k.

    • Автор:

      stella
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years