 \\ \frac{6 {x}^{2} }{2} \geqslant \frac{6 \times (2x + 2)}{3} \\ 3 {x}^{2} \geqslant 2 \times (2x + 2) \\ 3 {x}^{2} \geqslant 4x + 4 \\ 3 {x}^{2} - 4x - 4 \geqslant 0)
Дальше метод интервалов ОДЗ: х є R Нули функции:

Нулей парной кратности нету, знаки меняем поочередно на каждем интервале На крайнем правом интервале [2;+беск) знак +, на интервале (-2/3;2) знак -, а на интервале (-беск;-2/3] знак + Итого ответ такой: х є (-беск;-2/3] U [2;+беск)