• Очень Нужно, пожалуйста
    1. Исследуйте на чётность и нечётность функцию
    y=х^2 - cos2х .
    2. Сравните sin(-20градусов ) и sin(-85 градусов)
    Нужно все подробно, очень придирчивая учительница, заранее благодарю

Ответы 2

  • Большое спасибо❤
  • 1. Итак, нам нужно понять какая эта функция! Для этого  Вспомним, что функция f(x )-называется четной( нечетной), если для любого x∈D(f) и выполняется равенство  f(x)=f(-x).

    График четной функции симметричен относительно оси .

    График нечетной функции симметричен относительно начала координат

     Наш пример : y=x²-cos2x

    Функция определенна при x∈(-∞;∞) , то есть f(-x)=(-x)²-cos2(-x)=-x²-cos2x=-(x²-cos2x)-функция является четной, т.к cosx-четная функция

    2.Нам нужно сравнить два значения sin(-20°) V sin(-85)°, где V- знак сравнения ( птичкой называют)  

    Итак, sin(-20°)=sin(-10°)+sin30°≈0,1736+0,5≈-0,34

    sin(-85°)=sin(-5°)-sin(90°)≈0,0872+1≈0,9999=грубо 1

    sin(-20°) > sin(-85°). Есть еще более простой способ, смотри поскольку числа не четные, пусть в место sin(-20°) будет sin(-30°)=-0,5 и sin(-85°) бусть будет sin(-90)=-1 и так -0,5>-1

    Ответ: 1) y=x²-cos2x- функция четная ; 2)sin(-20°) > sin(-85°)

    Надеюсь, твой педагог не такая уш придирчивая. Удачи тебе!

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years