• Сколько возможных вариантов размещения плит размером N метров в длину и 1 метр в ширину в прямоугольник размерами 2N метров в длину и N метров в ширину.
    Допустим, если N = 2 , тогда 5 вариантов размещения ( картинка снизу )

    question img

Ответы 3

  • А разве если N - Будет нечётное, вариант решения будет такой же?
    • Автор:

      max97
    • 6 лет назад
    • 0
  • От чётности/нечётности число вариантов не зависит. Мы всё так же разделяем на два квадрата и действуем так, как действовали ранее.
  • Прямоугольник можно поделить на 2 квадрата со стороной N. Каждый такой квадрат можно замостить двумя способами: поместить N плит вертикально или горизонтально. Тогда возьмём 2 способа разложения плит в прямоугольнике: все расположены вертикально или все расположены горизонтально (на твоём рисунке это 1 и 5). Причём всякая плита не может выезжать за пределы своего квадрата, иначе не получится разложить остальные плиты. Теперь рассмотрим способы, когда N плит расположены горизонтально и N плит расположены вертикально (на твоём рисунке это 2, 3, 4). Мы можем передвигать квадрат из горизонтальных плит между вертикальными плитами. Таких способов N + 1 (когда N плит справа от квадрата, N - 1, N - 2 и т. д. до 0).

    Из вышенаписанного следует, что всего способов 2 + N + 1 = N + 3.

    Ответ: N + 3

    • Автор:

      jelly81
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years