• sin(x+1)+cos2x производная высшего порядка n
    помогите найти

Ответы 1

  • Последовательно вычислим производные первых порядков:

    f(x)=\sin(x+1)+\cos2x\\f'(x)=\cos(x+1)-2\sin2x\\f''(x)=-\sin(x+1)-4\cos2x\\f^{(3)}(x)=-\cos(x+1)+8\sin2x\\f^{(4)}(x)=\sin(x+1)+16\cos2x

    Что мы видим? Синусы и косинусы сменяют друг друга и во втором слагаемом накручивается степень двойки. Чтобы синусы и косинусы так менялись, нужно использовать формулы приведения. С двойкой все ясно. Теперь легко получить формулу для производной порядка n:

    f^{(n)}(x)=\sin\left(\frac{\pi n}{2} +(x+1)ight)+2^n\cos\left(\frac{\pi n}{2} +2xight)

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years