• Запишите уравнение касательной к шграфику функции y=(х²-4) / 2 в его точке с абцисссой х = 2

Ответы 1

  • Уравнение касательной в точке x₀ функции f(x) выглядит следующим образом: y = f'(x₀)(x-x₀)+f(x₀), где f'(x₀) - значение производной функции f(x) в точке x₀, f(x₀) - значение функции f(x) в точке x₀

    f(x) = \frac{x^2-4}{2}; x_0 = 2\\ \\ f(2) = \frac{4-4}{2} = \frac{0}{2} = 0 \\ \\ f'(x) = (\frac{1}{2} * (x^2-4))' = \frac{1}{2} * (x^2-4)' = \frac{1}{2} * 2x = x\\ \\ f'(2) = 2;\\ \\ y = 2(x-2)+0\\ \\ y = 2x-4

    Ответ: y = 2x-4 - касательная к графику функции f(x) в точке x₀=2

    • Автор:

      romeo0o7l
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years