• Реши уравнение с натуральными значениями Букв:
    a!+b!+c!=d!

Ответы 2

  • Спасибо всё правильно
    • Автор:

      amira
    • 5 лет назад
    • 0
  • a!+b!+c!=d!. Будем считать, что a\le b\le c.

    1-й случай. a=b=c.  Разделив уравнение на a!, получаем 3=(c+1)\cdot \ldots \cdot d\Rightarrow в правой части на самом деле один множитель; c+1=d=3; a=b=c=2. Проверка: 2!+2!+2!=3!;\ 2+2+2=6;\ 6=6 - верно. Итак, одно решение найдено.

    2-й случай. a=b<c. Разделив уравнение на a!, получаем 2+(a+1)\cdot \ldots \cdot c=(a+1)\cdot \ldots \cdot d. Следовательно, a+1=2;\ a=1\Rightarrow уравнение имеет вид 2+c!=d! Но два факториала не могут отличаться на 2, поэтому в этом случае уравнение решений не имеет.

    3-й случай. a<b.  Разделив уравнение на a!, получаем 1+(a+1)\cdot \ldots \cdot b+(a+1)\cdot \ldots \cdot c=(a+1)\cdot \ldots \cdot d. Такое уравнение не может иметь решений, так как все слагаемые, кроме первого, делятся на a+1.

    Ответ: a=b=c=2; d=3

    • Автор:

      benito
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years