• Решите уравнение x(x+1)(x+2)(x+3)=24 используя метод замены переменой

Ответы 2

  • поправочка не решений нет,а корней нет)
  • x(x + 1)(x + 2)(x + 3) = 24

    [x(x + 3)] [(x + 1)(x + 2)] = 24

    (x² + 3x)(x² + 2x + x + 2) = 24

    (x² + 3x)(x² + 3x + 2) = 24

    x² + 3x = t

    t * (t + 2) = 24

    t² + 2t - 24 = 0

    D = 2² - 4 * ( - 24) = 4 + 96 = 100 = 10²

    t_{1}=\frac{-2+10}{2}=4\\\\t_{2}=\frac{-2-10}{2}=-6

    1)x^{2}+3x= 4\\\\x^{2} +3x-4=0\\\\D=3^{2}-4*(-4)=9+16=25=5^{2}\\\\x_{1}=\frac{-3+5}{2}=1\\\\x_{2}=\frac{-3-5}{2}=-4\\\\2)x^{2} +3x=-6\\\\x^{2}+3x+6=0\\\\D=3^{2}-4*6=9-24=-15<0

    D < 0 - решений нет

    Ответ : - 4 ; 1

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years