• Найдите такие 4 последовательных четных натуральных числа, чтобы сумма квадратов первых двух чисел было на 656 единиц меньше суммы квадратов последних двух чисел. Пожалуйста с объяснением.срочно​

Ответы 1

  • Пусть 2х - меньшее число, тогда (2х+2), (2х+4) и (2х+6) - три следующих четных натуральных числа. Составим уравнение по условию:

    \tt (2x+4)^2+(2x+6)^2-((2x)^2+(2x+2)^2)=656\\4x^2+16x+16+4x^2+24x+36-(4x^2+4x^2+8x+4)=656\\8x^2+40x+52-(8x^2+8x+4)= 656\\ 8x^2+40x+52-8x^2-8x-4= 656\\32x+48=656\\32x=656-48\\32x=608\\x=608:32\\x=19

    2x = 2*19 = 38 - первое число

    38 + 2 = 40 - второе число

    40 + 2 = 42 - третье число

    42 + 2 = 44 - четвертое число

    Ответ: 38; 40; 42; 44.

    • Автор:

      blakefw3b
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years