Предмет:
АлгебраАвтор:
jazminetmkvcos²x - sin²x = (cosx - sinx)(cosx + sinx)
cos³x + sin³x = (cosx + sinx)(cos²x - cosx•sinx + sin²x) = (cosx + sinx)(1 - cosx•sinx)
cosx + sinx + cos³x + sin³x + cos²x - sin²x = (cosx + sinx)(1 + 1 - sinx•cosx - sinx + cosx) = 01) cosx + sinx = 0 ║: cosx ≠ 01 + tgx = 0 ⇔ tgx = - 1 ⇔ x = (-π/4) + πn, n ∈ Z2) 2 - sinx•cosx - sinx + cosx = 01 + (1 - sinx) + cosx(1 - sinx) = 0(1 + cosx)(1 - sinx) = - 1Анализ первой скобки: - 1 ≤ cosx ≤ 1 ⇔ 0 ≤ 1 + cosx ≤ 2Анализ второй скобки: - 1 ≤ sinx ≤ 1 ⇔ - 1 ≤ - sinx ≤ 1 ⇔ 0 ≤ sinx ≤ 2Произведение неотрицательных чисел есть число неотрицательное. Значит, корней нет ⇒ ∅ ОТВЕТ: (-π/4) + πn , n ∈ ZАвтор:
wade11Добавить свой ответ
Предмет:
Українська літератураАвтор:
roscoesanfordОтветов:
Смотреть
Предмет:
Английский языкАвтор:
kirby52Ответов:
Смотреть
Предмет:
БиологияАвтор:
alfredariasОтветов:
Смотреть