• Помогите, пожалуйста, доказать методом математической индукции.
    63, а)

    question img

Ответы 5

  • Это как вы так последнее преобразование сделали? Вдруг 17 стало и появилась сумма вместо произведения. У меня уже голова не варит, я столько часов туплю с этой задачей. Если не трудно, объясните, пожалуйста
    • Автор:

      ashlynn
    • 6 лет назад
    • 0
  • до этого все понятно ???? тогда без степеней ....32*2^ = 17*2^ + 15*2^17*2^ + 15*2^2 + 15*5^*3^ = 17*2^ + 15*(2^2 + 5^*3^)как обычные переменные 32х=15х+17х
  • Да, до этого всё предельно ясно. Дошло, спасибо огромное. Полдня до меня не доходило. Не мог всего-то разделить как обычные переменные, а ведь и так, и сяк, по всякому пробовал, и никто ж не смог догадаться, кого ни просил. Спасииибооо
    • Автор:

      wade32
    • 6 лет назад
    • 0
  • в ММИ обычно есть два решения1. приводится в варианту, который здесь то есть несколько частей делится на чтото, а вторая из предположения для n=k2. или в явном виде при n=k формкла (k+1)(k+2)/3 а для n=k+1 получается ((k+1)+1)((k+1)+2)/3Когда шде то что то на что делится или какие ниюудт факториалы - то обязательно юудет несколько слагаемых, которые явно делятся на что задали и второй обязательно привести ко n=k ....удачи\
  • 2^(5n+3) + 5^n*3^(n+2) делится на 17

    1. докажем для n=1

    2^(5+3) + 5*3^3 = 256 + 135 = 391 делится на 17

    2. допустим что верно для n=k

    3/ докажем для n=k+1

    2^(5(k+1) + 3) + 5^(k+1)*3^((k+1)+2) = 2^(5k+8) + 5^(k+1)*3^(k+3) = 2^5*2^(5k+3) + 5*5^k*3*3^(k+2) =    32*2^(5k+3) + 15*5^k*3^(k+2) = 17*2^(5k+3) + 15*(5^(5k+3)+5^k*3^(k+2)) = первый член кратен 17 так как один их множителей 17 и второй кратен 17 так по предположению 2.

    значит и сумма кратна 17

    доказали

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years