• Помогите пожалуйста решить:


    Покажите, что функция F(x)=2e^2x+2x^3+sinx+1 на всей числовой прямой, является первообразной для функции f(x)=4e^2x+6x^2+cosx

Ответы 1

  • Покажите, что функция F(x)=2e^2x+2x^3+sinx+1 на всей числовой прямой, является первообразной для функции f(x)=4e^2x+6x^2+cosx

    Чтобы F(x) была первообразной для f(x) , надо, чтобы выполнялось равенство:  F'(x) = f(x)

    Ищем F'(x)

    F'(x) = 4e^2x +6x² +Cosx

    F'(x) = f(x), ⇒ F(x)=2e^2x+2x^3+sinx+1 на всей числовой прямой, является первообразной для функции f(x)=4e^2x+6x^2+cosx

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years