• Прошу помочь найти производную сложной функции: ln(e^2x+sqr(e^4x+1))

Ответы 1

  • Используем правила для нахождения производной сложной функции, суммы функций и табличные производные. ( ln( {e}^{2x} + \sqrt{ {e}^{4x} + 1} ) )^{ \prime} = \\ = \frac{1}{ {e}^{2x} + \sqrt{ {e}^{4x} + 1 } } \times \\ \times (2 {e}^{2x} + \frac{1}{2 \sqrt{ {e}^{4x} + 1}} \times 4 {e}^{4x} ) = \\ = \frac{1}{ {e}^{2x} + \sqrt{ {e}^{4x} + 1 } } \times \\ \times (2 {e}^{2x} + \frac{2 {e}^{4x} }{\sqrt{ {e}^{4x} + 1}}
    • Автор:

      isiahhc7g
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years