• Доказать уравнение, 9 класс, нужна помощь 10 баллов
    cos^3x-cos3x / sin^3+sin3x= tg x​

Ответы 1

  • \frac{cos^3x-cos3x}{sin^3x+sin3x} =\frac{cos^3x-(4cos^3x-3cosx)}{sin^3x+(3sinx-4sin^3x)} =\frac{cos^3x-4cos^3x+3cosx}{sin^3x+3sinx-4sin^3x} =\frac{-3cos^3x+3cosx}{-3sin^3x+3sinx} =\frac{3cosx(-cos^2x+1)}{3sinx(-sin^2x+1)} =\frac{cosx*sin^2x}{sinx*cos^2x} =\frac{sinx}{cosx}=tgx\\ \\tgx=tgx

    • Автор:

      anvil
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years