• найдите промежутки возрастания и убывания функции, точки максимума и минимума функции f(x) =x^3-3x^2-9x​

Ответы 4

  • спасибо ❤
    • Автор:

      lanehurr
    • 5 лет назад
    • 0
  • отмечай как лучшее :)
    • Автор:

      jorge
    • 5 лет назад
    • 0
  • завтра
  • 1. Найдем производную данной функции

    f ` (x) = 3x² - 6x - 9 = 3(x² - 2x - 3)

    2. Приравняем к нулю производную и найдем точки экстремума.

    f ` (x) = 0 ⇒ x² - 2x -3 = 0 ⇒ (x-3)(x+1) = 0

    3. Строим числовую прямую, отмечаем точки 3 и -1 ( на рисунке)

    Замечаем, что точка максимума функции это -1, а точка минимума это 3

    Функция возрастает на промежутке ( - ∞; -1] V [3 ; +∞)

    Функция убывает на промежутке от [-1; 3]

    answer img
    • Автор:

      dutches
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years