• Сумма двух крайних первых шести членов геометрической прогрессии равна 33, а сумма средних членов 12. Найдите сумму первых четырех членов этой прогрессии.​

Ответы 1

  • Ответ:

    Объяснение:

    Геометрическая прогрессия это последовательность чисел где каждое следующее получается из предыдущего умножением на постоянное число (q) называемое знаменателем.

    ===

    формула для вычисления n-го члена геометрической прогрессии:

    ===

    a(n) = a1q^(n − 1)

    ===

    q^(n − 1)=a(n)/а1q=корень степени (n − 1) из [a(n)/а1]q=корень степени (2 − 1) из [36/54] =корень степени (1) из [0,67] = 0,6667тогда1) Sn=a1*(q^6-1)/(q-1)S6=54*(0,6667^6-1)/(0,6667-1)=148

    ===

    2) a(n) = a1q^(n − 1)а(3)=54*0,6667^(3 − 1)=24а(4)=54*0,6667^(4 − 1)=16а(5)=54*0,6667^(5 − 1)=11а(6)=54*0,6667^(6 − 1)=7

    ===

    Тогда: а1+а2+а3+а4+а5+а6=54+36+24+16+11+7=148

    Ответ: сумма первых шести членов геометрической прогрессииравна 148

    ===

    • Автор:

      mackd599
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years