• 2. Знайдіть цілі розв'язки нерівності
    [tex]0 < 1 + \frac{2 + 3x}{2} < 3[/tex]

Ответы 1

  • To solve the inequality tex0 < 1 + \frac{2 + 3x}{2} < 3/tex, we can break it down into two separate inequalities:

    1) tex0 < 1 + \frac{2 + 3x}{2}/tex

    2) tex1 + \frac{2 + 3x}{2} < 3/tex

    Let's solve each inequality step by step:

    1) tex0 < 1 + \frac{2 + 3x}{2}/tex

    First, let's simplify the expression inside the fraction:

    tex\frac{2 + 3x}{2}/tex

    Now, let's multiply both sides of the inequality by 2 to eliminate the fraction:

    tex0 \cdot 2 < 1 \cdot 2 + (2 + 3x)/tex

    Simplifying further gives:

    tex0 < 2 + 2 + 3x/tex

    tex0 < 4 + 3x/tex

    Next, let's isolate the variable by subtracting 4 from both sides:

    tex0 - 4 < 4 + 3x - 4/tex

    tex-4 < 3x/tex

    Finally, divide both sides by 3 to solve for x:

    tex\frac{-4}{3} < x/tex

    2) tex1 + \frac{2 + 3x}{2} < 3/tex

    Let's simplify the expression inside the fraction:

    tex\frac{2 + 3x}{2}/tex

    Now, multiply both sides of the inequality by 2 to eliminate the fraction:

    tex1 \cdot 2 + \frac{2 + 3x}{2} \cdot 2 < 3 \cdot 2/tex

    Simplifying further gives:

    tex2 + 2 + 3x < 6/tex

    tex4 + 3x < 6/tex

    Next, isolate the variable by subtracting 4 from both sides:

    tex4 + 3x - 4 < 6 - 4/tex

    tex3x < 2/tex

    Finally, divide both sides by 3 to solve for x:

    texx < \frac{2}{3}/tex

    Therefore, the solution to the given inequality is tex\frac{-4}{3} < x < \frac{2}{3}/tex.

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years