To solve the inequality tex0 < 1 + \frac{2 + 3x}{2} < 3/tex, we can break it down into two separate inequalities:
1) tex0 < 1 + \frac{2 + 3x}{2}/tex
2) tex1 + \frac{2 + 3x}{2} < 3/tex
Let's solve each inequality step by step:
1) tex0 < 1 + \frac{2 + 3x}{2}/tex
First, let's simplify the expression inside the fraction:
tex\frac{2 + 3x}{2}/tex
Now, let's multiply both sides of the inequality by 2 to eliminate the fraction:
tex0 \cdot 2 < 1 \cdot 2 + (2 + 3x)/tex
Simplifying further gives:
tex0 < 2 + 2 + 3x/tex
tex0 < 4 + 3x/tex
Next, let's isolate the variable by subtracting 4 from both sides:
tex0 - 4 < 4 + 3x - 4/tex
tex-4 < 3x/tex
Finally, divide both sides by 3 to solve for x:
tex\frac{-4}{3} < x/tex
2) tex1 + \frac{2 + 3x}{2} < 3/tex
Let's simplify the expression inside the fraction:
tex\frac{2 + 3x}{2}/tex
Now, multiply both sides of the inequality by 2 to eliminate the fraction:
tex1 \cdot 2 + \frac{2 + 3x}{2} \cdot 2 < 3 \cdot 2/tex
Simplifying further gives:
tex2 + 2 + 3x < 6/tex
tex4 + 3x < 6/tex
Next, isolate the variable by subtracting 4 from both sides:
tex4 + 3x - 4 < 6 - 4/tex
tex3x < 2/tex
Finally, divide both sides by 3 to solve for x:
texx < \frac{2}{3}/tex
Therefore, the solution to the given inequality is tex\frac{-4}{3} < x < \frac{2}{3}/tex.
Автор:
Fedoseewa27Добавить свой ответ
Предмет:
ХимияАвтор:
emanuelchenОтветов:
Смотреть
Предмет:
Окружающий мирАвтор:
tippy68Ответов:
Смотреть
Предмет:
ЛитератураАвтор:
trappertuapОтветов:
Смотреть