• Решите тригонометрическое уровнение
    [tex] \sin {}^{2} (2x) + \sin {}^{2} (3x) = 1[/tex]

Ответы 1

  • Формула  sin²x=(1-cos2x)/2

    (1-cos4x)/2  + (1-cos6x)/2=1

    cos4x+cos6x=0

    Формула

    cosα+cosβ=-2cos((α+β)/2)·cos((α-β)/2)

    cos5x·cosx=0

    cos5x=0 ⇒5x=(π/2)+πk, k∈Z

    x=(π/10)+(π/5)·k, k∈Z

    cosx=0 ⇒  x=(π/2)+πn, n∈Z

    Найдем при каких k

    (π/10)+(π/5)·k=(π/2)+πn

    k=5n+4

    При k=5n+4  из первой серии ответов получаем вторую.

    Значит в ответе достаточно указать только первую серию

    О т в е т. (π/10)+(π/5)·k, k∈Z

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years