log2 (x+2) - log(0,5) (x+6) = 1 + log2 (x^2+12)ОДЗ: (x+2)>0; (x+6)>0; (x^2+12)>0 -------------------------------> x > -2log2 (x+2) - log(2^(-1)) (x+6) = log2 2 + log2 (x^2+12)log2 (x+2) + log2 (x+6) = log2 2 + log2 (x^2+12)log2 (x+2)(x+6) = log2 2*(x^2+12)(x+2)(x+6) = 2*(x^2+12)x^2 + 2x + 6x + 12 = 2x^2 + 24x^2 - 8x + 12 = 0x(1,2) = [8 + -V(8^2 - 4*12)]\2 = (8 + -4)\2 = 4 + -2x1 = 4-2 = 2x2 = 4+2 = 6log2 31 = t -----> 2^t = 31 -----> 4 < t < 5 (так как 2^4 = 16 и 2^5 = 32)V36 < V37 < V49 ---------------> 6 < V37 < 7 =>подходит только корень x2 = 6