Предмет:
АлгебраАвтор:
paytonhollandОтвет:
Використаємо формулу для синусу суми кутів:
sin(x+y) = sin(x)cos(y) + cos(x)sin(y)
Замінимо x = 75°, y = 30° = 15° + 15°:
sin(75°+30°) = sin(75°)cos(30°) + cos(75°)sin(30°)
sin(75°) = sin(45°+30°) = sin(45°)cos(30°) + cos(45°)sin(30°)
cos(45°) = sin(45°) = 1/√2, cos(30°) = √3/2, sin(30°) = 1/2
sin(75°) = (1/√2)(√3/2) + (1/√2)(1/2) = (√6 + 1)/(2√2)
cos(75°) = cos(45°+30°) = cos(45°)cos(30°) - sin(45°)sin(30°)
cos(75°) = (1/√2)(√3/2) - (1/√2)(1/2) = (√6 - 1)/(2√2)
Підставляючи значення, отримуємо:
sin(75°+30°) = ((√6 + 1)/(2√2))(√3/2) + ((√6 - 1)/(2√2))(1/2)
sin(75°+30°) = (√2 + √6)/4 + (√2 - √6)/4
sin(75°+30°) = √2/2
Тепер знайдемо sin(105°):
sin(105°) = sin(180° - 75°) = sin(75°) = (√6 + 1)/(2√2)
Підставляємо значення:
sin(105°) + sin(75°)sin(15°) = (√6 + 1)/(2√2) + (√2/2)(1/2) = (√6 + 2)/(2√2) ≈ 1,0888
Объяснение:
Автор:
dharma55dgsin 105° +sin 75° = sin180°
sin180°∙sin 15° = sin2700°sin270° = -1 тоді і sin2700° = -1
Автор:
gracie8l4yДобавить свой ответ
Предмет:
МатематикаАвтор:
wendymaxwellОтветов:
Смотреть
Предмет:
ГеографияАвтор:
erickweaverОтветов:
Смотреть