Ответ:
Объяснение:
a^2-14a+49=(a-7)^2 \\a^2-49=(a-7)*(a+7)\\\frac{28a}{7-a}= - \frac{28a}{a-7}
= > (\frac{2a}{a-7} -\frac{4a}{a^2-14a+49} ): \frac{a-9}{a^2-49} +\frac{28a}{7-a} =\\\\=(\frac{2a}{a-7}-\frac{4a}{(a-7)^2})*\frac{(a-7)(a+7)}{a-9}-\frac{28a}{a-7} = \\ \\=(\frac{2a*(a-7)-4a}{(a-7)^2}* \frac{(a-7)(a+7)}{a-9}-\frac{28a}{a-7} =\\\\=\frac{(2a^2-14a-4a)*(a+7)}{(a-7)*(a-9)} -\frac{28a}{a-7}= \frac{(2a^2-18a)(a+7)}{(a-7)(a-9)} -\frac{28a}{a-7}=
= \frac{2a(a-9)(a+7)}{(a-7)(a-9)}-\frac{28a}{a-7} =\frac{2a(a+7)}{a-7}-\frac{28a}{a-7}=\\ \\ =\frac{2a^2+14a-28a}{a-7} =\frac{2a^2-14a}{a-7}= \frac{2a(a-7)}{a-7}=2a
2a=2a что и требовалось доказать !
Автор:
kaliyahkq5hДобавить свой ответ
Предмет:
МатематикаАвтор:
red35Ответов:
Смотреть
Предмет:
ЛитератураАвтор:
kendrickОтветов:
Смотреть
Предмет:
Английский языкАвтор:
natasha70Ответов:
Смотреть