\[ \log_a(x - ba) + \log_ax = \frac{2}{\log_3a} + \log_a(1 - 2a) \]
\[ \log_a(x(x - ba)) = \frac{2}{\log_3a} + \log_a(1 - 2a) \]
\[ \log_a(x^2 - abx) = \frac{2}{\log_3a} + \log_a(1 - 2a) \]
\[ x^2 - abx = a^{\frac{2}{\log_3a}} \cdot (1 - 2a) \]
\[ x^2 - abx = \frac{1}{3} \cdot a^{\frac{2}{\log_3a}} - 2a^{\frac{3}{\log_3a}} \]
\[ x^2 - abx - \frac{1}{3} \cdot a^{\frac{2}{\log_3a}} + 2a^{\frac{3}{\log_3a}} = 0 \]
\[ x^2 - abx + 2a^{\frac{3}{\log_3a}} - \frac{1}{3} \cdot a^{\frac{2}{\log_3a}} = 0 \]
Таким образом, упрощенное уравнение: \[ x^2 - abx + 2a^{\frac{3}{\log_3a}} - \frac{1}{3} \cdot a^{\frac{2}{\log_3a}} = 0 \]