Уравнение прямой, которая проходит через точку М(1; -2) и параллельна прямой у = 2х + 4, можно найти следующим образом:
1. Поскольку прямые параллельны, их угловые коэффициенты равны. Угловой коэффициент данной прямой равен 2 (это коэффициент перед x в уравнении прямой). Значит, угловой коэффициент искомой прямой также равен 2.
2. Теперь, когда мы знаем угловой коэффициент (m = 2), мы можем найти коэффициент сдвига (b), используя известную точку М(1; -2). Подставим эти значения в уравнение прямой y = mx + b и решим его относительно b:
-2 = 2*1 + b
b = -2 - 2 = -4
Таким образом, уравнение искомой прямой: y=2x-4.