• Решите пожалуйста алгебру. Гдз платное. Желательно научите решать

Ответы 1

  • To evaluate the expressions $x^2 - 3x + 5$ and $2x^3 + 3x^2 - 12x - 4$ at the given values of $x$, we can substitute each value into the expression and calculate the result. Let's do that:

    For $x = 1$:
    $1^2 - 3(1) + 5 = 1 - 3 + 5 = 3$

    For $x = -1$:
    $(-1)^2 - 3(-1) + 5 = 1 + 3 + 5 = 9$

    For $x = 2$:
    $2^2 - 3(2) + 5 = 4 - 6 + 5 = 3$

    For $x = -2$:
    $(-2)^2 - 3(-2) + 5 = 4 + 6 + 5 = 15$

    For $x = 5$:
    $5^2 - 3(5) + 5 = 25 - 15 + 5 = 15$

    For $x = -5$:
    $(-5)^2 - 3(-5) + 5 = 25 + 15 + 5 = 45$

    So, the values of $x^2 - 3x + 5$ at $x = \pm 1, \pm 2, \pm 5$ are $3, 9, 3, 15, 15, 45$, respectively.

    Now, let's evaluate the expression $2x^3 + 3x^2 - 12x - 4$ at the given values of $x":

    For $x = 1$:
    $2(1)^3 + 3(1)^2 - 12(1) - 4 = 2 + 3 - 12 - 4 = -11$

    For $x = -1$:
    $2(-1)^3 + 3(-1)^2 - 12(-1) - 4 = -2 + 3 + 12 - 4 = 9$

    For $x = 2$:
    $2(2)^3 + 3(2)^2 - 12(2) - 4 = 16 + 12 - 24 - 4 = 0$

    For $x = -2$:
    $2(-2)^3 + 3(-2)^2 - 12(-2) - 4 = -16 + 12 + 24 - 4 = 16$

    For $x = 5$:
    $2(5)^3 + 3(5)^2 - 12(5) - 4 = 250 + 75 - 60 - 4 = 261$

    For $x = -5$:
    $2(-5)^3 + 3(-5)^2 - 12(-5) - 4 = -250 + 75 + 60 - 4 = -119$

    So, the values of $2x^3 + 3x^2 - 12x - 4$ at $x = \pm 1, \pm 2, \pm 5$ are $-11, 9, 0, 16, 261, -119$, respectively.
    • Автор:

      luciana
    • 11 месяцев назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years