• Решите уравнение: 1. tgx=13 2. 12+sin3x-3=-1 3. 2sin2x-3cosx=0

Ответы 2

  • Мне тебе опять надо обьяснять?
  • Давайте решим каждое уравнение по очереди:

    1. tg(x) = 13
    Так как тангенс функция периодическая, то мы можем записать общее решение в виде:
    x = arctan(13) + πk, где k - целое число.

    2. 12 + sin(3x) - 3 = -1
    Перегруппируем уравнение:
    sin(3x) = -1 - 12 + 3
    sin(3x) = -10
    Данное уравнение не имеет решения, так как значения синуса находятся в диапазоне от -1 до 1.

    3. 2sin(2x) - 3cos(x) = 0
    Разделим обе части уравнения на 3cos(x):
    2sin(2x) / 3cos(x) = 0
    2tan(2x) / 3 = 0
    tan(2x) = 0

    Так как тангенс равен нулю при угле πk (где k - целое число), то общее решение данного уравнения будет:
    2x = πk
    x = πk / 2, где k - целое число.
    • Автор:

      luna13
    • 8 месяцев назад
    • 2
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years