• Три положительных числа составляют геометрическую прогрессию. Если второй член увеличить на 8, то данная прогрессия станет арифметической, но если затем третий член увеличить на 64, то получится снова геометрическая прогрессия.Вычислить сумму этих чисел

Ответы 1

  • Пусть три данных числа равны а, ак, аk^2, тогда числа a, ak+8, ak^2 - образуют арифмитическую прогрессию, и по одному из ее свойств иммеем

    2(ak+8)=a+ak^2

     

    числа a, ak+8, ak^2+64 - образуют геометрическую прогресию и по одному из ее свойств

    (ak+8)^2=a(ak^2+64)

     

    Нам нужно найти сумму a+ak+ak^2=ak+2(ak+8)=3ak+16

     

    2(ak+8)=a+ak^2

    (ak+8)^2=a(ak^2+64)

     

    2ak+16=a+ak^2

    a^2k^2+16ak+64=a^2k^2+64a

     

    2ak+16=a+ak^2

    16ak+64-64a=0

     

    2ak+16=a+ak^2

    ak+4-4a=0

     

    a(k-4)=-4

    a=4/(4-k)

     

    2*4/(4-k) *k+16=4/(4-k)  *(1+k^2)

    8k+16(4-k)=4(1+k^2)

    2k+4(4-k)=1+k^2

    2k+16-4k=1+k^2

    k^2+2k-17=0

    D=72=36*2

    k1=(-2-6*корень(2))/2<0 - не подходит (данные три числа положительные, поэтом и знаменатель как отношение двух положительных чисел число положительное)

    k2=(-2+6*корень(2))/2=3*корень(2)-1

     

    k=3*корень(2)-1

    a=4/(4-k)=4/(4-3*корень(2)+1)=4/(5-3*корень(2))=

    =4*(5+3*корень(2))/(25-18)=4/7(5+3*корень(2))

     

    3ak+16=3*(3*корень(2)-1)*4/7*(5+3*корень(2))+16=

    =12/7*(15корень(2)+18-5-3корень(2))+112/7=

    =12/7*(12корень(2))+125)

     

    з.ы. по идеи вот так..."интересное число" получилось

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years