Три положительных числа составляют геометрическую прогрессию. Если второй член увеличить на 8, то данная прогрессия станет арифметической, но если затем третий член увеличить на 64, то получится снова геометрическая прогрессия.Вычислить сумму этих чисел
Пусть три данных числа равны а, ак, аk^2, тогда числа a, ak+8, ak^2 - образуют арифмитическую прогрессию, и по одному из ее свойств иммеем
2(ak+8)=a+ak^2
числа a, ak+8, ak^2+64 - образуют геометрическую прогресию и по одному из ее свойств
(ak+8)^2=a(ak^2+64)
Нам нужно найти сумму a+ak+ak^2=ak+2(ak+8)=3ak+16
2(ak+8)=a+ak^2
(ak+8)^2=a(ak^2+64)
2ak+16=a+ak^2
a^2k^2+16ak+64=a^2k^2+64a
2ak+16=a+ak^2
16ak+64-64a=0
2ak+16=a+ak^2
ak+4-4a=0
a(k-4)=-4
a=4/(4-k)
2*4/(4-k) *k+16=4/(4-k) *(1+k^2)
8k+16(4-k)=4(1+k^2)
2k+4(4-k)=1+k^2
2k+16-4k=1+k^2
k^2+2k-17=0
D=72=36*2
k1=(-2-6*корень(2))/2<0 - не подходит (данные три числа положительные, поэтом и знаменатель как отношение двух положительных чисел число положительное)
k2=(-2+6*корень(2))/2=3*корень(2)-1
k=3*корень(2)-1
a=4/(4-k)=4/(4-3*корень(2)+1)=4/(5-3*корень(2))=
=4*(5+3*корень(2))/(25-18)=4/7(5+3*корень(2))
3ak+16=3*(3*корень(2)-1)*4/7*(5+3*корень(2))+16=
=12/7*(15корень(2)+18-5-3корень(2))+112/7=
=12/7*(12корень(2))+125)
з.ы. по идеи вот так..."интересное число" получилось
Автор:
míriamuzmsДобавить свой ответ
случайным образом выбрали трёхзначное число какова вероятность того что сумма его цифр=18
помогите решить!!! 6целых1тренадцатая-10дробь13; 8целых1седьмая-4целые2седьмые; 12-(9целых3седьмые-3целые5седьмых)
Предмет:
МатематикаАвтор:
savionОтветов:
Смотреть
Поверхность железа покрыта ржавченой . Предложите способ очистки поверхности химическим способом.