• a, b, c - длины сторон треугольника. Докажите, что  [tex]a^3+b^3+3abc>c^3[/tex]

Ответы 2

  • можно просто подставить любые числа
    • Автор:

      abigail83
    • 5 лет назад
    • 0
  • Запишем неравенство треугольника a+b>c Имеем a+b-c>0 возведем обе части в куб имеем. a^3+b^3-c^3+3ab(a+b)+3bc(c-b)+3ac(c-a)-6abc>0 тк a+b>c то c-b-3abc знак поменяли тк умножали на - далее с-a-3abc а 3ab(a+b)>3abc сложим с самым 1 1 2 неравенства и вычтем 3 неравенство тогда получим a^3+b^3-c^3-6abc>-3abc-3abc-3abc то есть a^3+b^3-c^3+3abc>0 а тогда a^2+b^2+3abc>c^3 что и требовалось доказатьА
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years