2)y=sin²x+sinxx=0⇒y=0y=0⇒sin²x+sinx=0⇒sinx(sinx+1)=0⇒sinx=0⇒x=πn U sinx=-1⇒x=-π/2+πn(0;0),(πn;0),(-π/2+πn;0)y=cosx-cos2x-sin3xx=0⇒y=1-1-0=0y=0⇒cosx-cos2x-sin3x=0⇒2sin3x/2sinx/2-2sin3x/2cos3x/2)=2sin3x/2(sinx/2-cos3x/2)=0sin3x/2=0⇒3x/2=πn⇒x=2πn/3 sinx/2-cos3x/2=0⇒sinx/2-sin(π/2-3x/2)=0⇒-2sin(x/2-π/4)cos(x+π/4)=0sin(x/2-π/4)=0⇒x/2-π/4=πn⇒x/2=π/4+πn⇒x=π/2+2πncos(x+π/4)=0⇒x+π/4=π/2+πn⇒x=π/4+πn(0;0),(2πn/3 ;0),(π/2+2πn;0,(π/4+πn;0)3.1)2-2sin²x-sinx-2>02sin²x+sinx<0sinx=a2a²+a<0⇒a(2a+1)<0 a=0 U a=-1/2 + _ +_________________________________ -1/2 0-1/2<a<0⇒-1/2<sinx<0⇒x∈(-π/6+2πn;2πn) U (π+2πn;7π/6+2πn)3.2)cos2x-5sinx-3≤01-2sin²x-5sinx-3≤02sin²x+5sinx+2≥0sinx=a2a²+5a+2≥0D=25-16=9a1=(-5-3)/4=-2U a2=(-5+3)/4=-1/2 + _ +_________________________________ -2 -1/2a≤-2⇒sinx≤-2∈[-1;1]-нет решенияa≥-1/2⇒sinx≥-1/2⇒-π/6+2πn≤x≤7π/6+2πn⇒x∈[-π/6+2πn;7π/6+2πn]