(X+9)^2*(x+6)-5
Найти наибольшее значение на промежутке [-10;-8] помогите пожалуйста
Сначала раскроем скобки (чтобы не мучаться со взятием производной от произведений)
Получаем
(x+9)^2*(x+6)-5=(x^2+18x+81)(x+6)-5=x^3+24x^2+189x+481
Теперь возьмем производную от этой функции, получим:
f'(x)=3x^2+48x+189
Теперь найдем значение производной на границе нашего отрезка. Получаем:
f'(-10)=3*100-480+189=9
f'(-8)=3*64+48*(-8)+189=-3
Производная сменила знак, значит на это интервале она будет принимать значение 0 и в этой точке будет максимум функции, потому что если производная положительна, функция будет расти, если отрицательна, убывать. Значит функция будет расти от точки x до точки x1, где f'(x1)=0, а после нее будет убывать до точки где x=-8.
Найдем решения уравнения f'(x)=0, т.е
3x^2+48x+189=0
Обычно квадратное уравнение, найдем D
D=48^2-4*3*189= 2304-2268=36
Найдем решения уравнения:
значит x1=-9, x2=-7, но т.к x2 не входит в отрезок [-10;-8], то нам подходит только одно решения x1=-9
Ответ: Максимальное значение функции достигается в точке x=-9 и равно оно -5.
Примечание: Вообще можно заметить, что (x+9)^2 всегда положительное, а (x+6) будет всегда отрицательном на рассматриваемом промежутке. Значит чтобы функция достигла максимального значения необходимо просто сделать так, чтобы (x+9)^2*(x+6) было равно нулю. И здесь получаются 2 варианта:
1. х=-6 не подходит так как не пренадлежит отрезку [-10;-8]
2. x=-9, подходит.
Но этот метод будет не универсальным, а пригодным только для этого примера.
Автор:
cashggisДобавить свой ответ
Предмет:
ХимияАвтор:
gracie8l4yОтветов:
Смотреть
Предмет:
Русский языкАвтор:
melodye3vfОтветов:
Смотреть
Боковое ребро пирамиды разделено на 6 равных частей. Через точки деления проведены плоскости, параллельные основанию пирамиды. Площадь основания равна 3600 кв. см. Найдите площадь сечений
Предмет:
ГеометрияАвтор:
brayden160Ответов:
Смотреть
В правильной четырехугольной призме площадь основания равна 144 кв. см, высота равна 14 см. Найдите боковую поверхность призмы