• Найти область определения функции:[tex]y(x)=\sqrt{2+9x-5x*2}[/tex]

Ответы 2

  • у = √(2 + 9х - 5х²)

    Подкоренное выражение не может быть отрицательным

    2 + 9х - 5х² ≥ 0

    Найдём нули функции 2 + 9х - 5х²

    - 5х²+ 9х + 2 = 0

    D = 81 + 40 = 121

    √D = 11

    x₁ = (-9 - 11):(-10) = 2

    x₁ = (-9 + 11):(-10) = -0,2

    Поскольку график функции 2 + 9х - 5х² - квадратная парабола веточками вниз, то неравенство верно при

    х∈ [-0,2; 2]

    Область определения D(y) = [-0,2; 2]

    • Автор:

      spot
    • 6 лет назад
    • 0
  • Напомню, что функция от одной переменной, говоря вне рамок каких-либо алгебраических теорий, есть некоторый закон, находящий своё отражение в неком алгебраическом выражении, который ставит в однозначное соответствие каждому элементу x, принадлежащему множеству X(x\in X; притом множество X в данном случае называют множеством определения этой функции, а элемент этого множества - аргументом) каждый элемент y\in Y (Y - множество значений, а его элемент, соответствующий определённому значению мн. X - значение функции в этой точке). Функции такого рода могут являться математическими моделями очень большого спектра реальных ситуаций: например, ваша позиция в очереди за хлебом с x количеством человек будет задаваться функцией y=x+1. Геометрической моделью функции от одной переменной является график функции. Его интуитивно можно определить, как некоторое множество точек на плоскости с заданными декартовыми координатами, координаты каждой из которых связаны математическим выражением, задающим функцию. Например, графиком функции y=x+1 прямая, не проходящая через начало координат, возрастающая. 

    Помните, пожалуйста, вдальнейшем, что функцию от одной переменной в математике принято обозначать следующим образом: на примере вашей функции y=f(x)(читается: "эф от икс"), где f(x)=\sqrt{2+9x-5x\cdot 2 или просто y=....

      Для того, чтобы ответить на вопрос об области определения функции, нужно преобразовать подкоренное выражение в правой части.

    \sqrt {2+9x-5x \cdot 2}=\sqrt{2+(9-10)x}=\sqrt{-x+2}.

     

    Напомню, что в область определения функци от одной переменной входят все допустимые значения, т.е. значения, при которых выражение f(x) имеет смысл.

    Выражение \sqrt{-x+2} имеет смысл при (т.к. квадратный корень нельзя изелекать из отрицательного числа)

    {-x+2} \geq0\\ x\geq2

    Ответ: область определения - луч (-\cal1; 2].

     

     

    • Автор:

      clicker
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years