• при каком наименьшем целом значении m уравнение (m-1)x^2-2(m+1)x+m-3=0 имеет два различных действительных корня?

Ответы 1

  • квадратное уравнение будет иметь 2 действительных корня в том случае, если дискриминант этого уравнения будет больше либо равен 0, причем в случае равенства дискриминанта 0 корни будут совпадать. Если нужны  различные корни то дискриминант должен быть строго больше 0. Напишите потом какой случай инетресует именно вас, я поправлю если надо. Сейчас считал для 2х различных корней. (m-1)x^2-2(m+1)x+m-3=0 Дискриминант считается по формуле b^2-4ac, это знаем... в таком случае (m-1)=a; -2(m+1)=b; m-3=c. Подставляем писанину в формулу дискриминанта и считаем это уравнение относительно m

    (2m+2)^2-4(m-3)(m+1)>0

    минус из b выкинули так как там все равно квадрат и минуса не будет

    4m^2+8m+4-4m^2+4m+12m-12>0

    24m-8>0

    m>8/24

    m>1/3

    вроде правильно но расчеты советую проверить, мог накосячить, спать охота...

    главное идею подсказал 

    • Автор:

      rogercuv2
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years