Точки пересечения кривой y = x^4 и прямой y = 1 находим, приравняв уравнения: х1 = 1, х2 = -1. Это пределы интегрирования.Итак, нам требуется вычислить определенный интеграл от функции y = x^4 по пределам от -1 до 1.Первообразная равна x^5/5. Подставляем верхний предел, равный 1, получаем 1/5. Подставляем нижний предел, равный -1, получаем - 1/5.Пользуясь формулой Ньютона-Лейбница, отнимаем от первого значения второе:1/5 - (- 1/5) = 2/5.Это и есть искомая площадь.Ответ: 2/5.