Левая часть равна либо -1 (если sin x < 0), либо 1 (если sin x > 0).Уравнение -1 = 1 - cos 2x решений не имеет, т.к. сводится к уравнению cos 2x = 2.Тогда sin x > 0 и левая часть равна 1.1 - cos 2x = 1cos 2x = 02x = pi/2 + pi*nx = pi/4 + pi*n / 2Нам нужны такие x, для которых sin x > 0Разбираем случаи.1) n = 4ksin(pi/4 + 2 * pi * k) = sin(pi/4) > 0, подходит2) n = 4k + 1sin(pi/4 + 2pi k + pi/2) = sin(3pi/4) > 0, подходит3) n = 4k - 1sin(pi/4 + 2pi k - pi/2) = sin(-pi/4) < 0, не подходит4) n = 4k - 2sin(pi/4 + 2pi k - pi) = sin(-3pi/4) < 0, не подходит.(Отбор корней можно производить также по тригонометрической окружности, по графику и вообще как угодно)Решение уравнения - множествоx = pi/4 + 2pi k или x = 3pi/4 + 2pi k, k - любое целое число.В отрезок [pi/2, 3pi/2] попадает точка 3pi/4.