ОДЗ 2х²+3х+9≥0Можно решить это неравенство, а можно потом подставить корни и проверить будет ли выражение больше нуля.Уравнение, сводящееся к квадратному. Замена переменной√(2х²+3х+9) = t ⇒ 2x²+3x+9 = t² ⇒2x²+3x-=t²-9t²-9 - 5·t +3=0t²-5t-6=0D=(-5)²-4·(-6)=25+24=49t=(5-7)/2=-1 или t=(5+7)/2=6Возвращаемся к переменной х√(2х²+3х+9) = -1 - уравнение не имеет решений, так как по определению арифметического квадратного корня справа должно быть неотрицательное число, а у нас (-1)√(2х²+3х+9) = 6Возводим в квадрат2х²+3х+9=362x²+3x-27=0D=9+8·27=225x=(-3-15)/4 или х=(-3+15)/4х=-4,5 или х=3Проверяем, удовлетворяют ли корни ОдЗ2(-4.5)²+3·(-4,5)+9=40,5-13,5+9> 0 верно. х=-4,5 корень уравнениях=3 тоже,Ответ. -4,5 ; 3