• 1) В палаллелограмме ABCD угол В равен 150 градусам, высота параллелограмма, опущенная из точки С на AD, равна 2 см. Найдите АВ.
    2) В четырехугольнике ABCD диагонали АС и BD в точке О. АО - медиана треугольника BDC, а DO - медиана треугольника ACD. Докажите, что этот четырехугольник - параллелограмм.

Ответы 1

  • 1.опустим высоту из вершины B (обозначим ее BH, она тоже равна 2 см.) И рассмотрим получившийся треугольник ABH. Он прямоугольный. Угол ABH = 150 - 90 = 60градтогда угол HAB = 30 град. Катет лежащий против угла в 30 град. равен половине гипотенузы. АВ = 2*2 = 4(см)2. BO = ODAO = OCесли в четыреугольники диагонали делятся точкой пересеч. пополам то этот четырехугольник параллелограмм. (признак параллелограма)
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years