• решите задачу системой уравнения


      Две бригады, работая вместе, могут выполнить задание за 8 ч. Первая бригада , работая одна, могла бы выполнить задание на 12 ч быстрее, чем вторая бригада. За сколько часов могла бы выполнить задание первая бригада, если бы она работала одна? 

Ответы 2

  • Пусть первая бригада, работая одна, выполняет работу за x часов; тогда второй бригаде на выполнение всей работы потребуется (x+10) часов. Соотвественно, производительность труда первой бригады равна (1/x) (1/час), второй бригады — (1/(x+10)) (1/час). За 12 часов обе бригады, работая совместно, выполнят всю работу (т. е. 1). Получаем уравнение: 12*(1/x + 1/(x+10)) = 1. Умножаем левую и правую части на x(x+10): 12(x+10) + 12x = x(x+10); x² + 10x − 24x − 120 = 0; x² − 14x − 120 = 0. Выбираем положительное значение x: x = 7 + √(49+120) = 20. Значит, первой бригаде для выполнения всей работы потребуется 20 часов, а второй бригаде — 20+10=30 часа. Проверяем: 12*(1/20+1/30) = 12*(5/60) = 1 (Ok). ОТВЕТ: первой бригаде для выполнения этой работы потребовалось бы 20 часов.

    • Автор:

      madeleine
    • 6 лет назад
    • 0
  • Пусть первая бригада выполняет работу за х часов, вторая - за у. 

    Составляем систему уравнений:

    х-у=12

    х+у=8 

    Решаем эту систему.

     

     

     

    • Автор:

      sammy90
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years