• На доске выписаны все целые числа от 1 до n. Сеня почитал, сколько всего цифр выписано. Оказалось, что это число записывается теми же цифрами, что и n, но в обратном направлении. Найдите n если оно трёхзначное.

Ответы 1

  • От 1 до 9 - 9 цифр.От 10 до 99 - 90 двузначных чисел, то есть 90*2 = 180 цифр.От 100 до n - ровно n - 99 трехзначных чисел, то есть 3(n-99) = 3(n-100+1) цифр.Пусть число n записывается как 100a+10b+c, тогда количество цифр9 + 180 + 3(100a+10b+c-100+1) = 100c + 10b + a100*(3a+1-3) + 10*(3b+8) + (9+3c+3) = 100c + 10b + a100*(3a-2) + 10*(3b+8) + (3c+12) = 100c + 10b + aПеренесем 10 из числа 12 в десятки100*(3a-2) + 10*(3b+9) + (3c+2) = 100c + 10b + aОчевидно, что:1) 3c + 2 = a, или 10+а, или 20+а (максимум 3*9+2 = 29)2) 3b + 9 (+1 или +2) = 10+b, или 20+b, или 30+b (максимум 3*9+11 = 38)3) 3a - 2 + 1 (+1 или +2) = сИз 2) число 3b + 9, или 3b + 10, или 3b + 11 кончается на b.а) 3b+9 кончается на b. Не может быть. 3*0+9=9, 3*1+9=12, ..., 3*9+9=36Ни в одном случае та же цифра не получается.б) 3b+10 кончается на b. b = 0 (3*0+10=10) или 5 (3*5+10=25).Значит, из единиц в десятки перенос 1. 3c + 2 = 10 + aв) 3b+11 кончается на b. Не может быть. 3*0+11=11, 3*1+11=14, ..., 3*9+11=38Из 3) получаем такие варианты:а) Если b=0, то в сотни перенос 1. 3a-2+1 = 3a-1 = c - однозначное числоПары (a, c) = (1, 2), (2, 5), (3, 8)б) Если b=5, то в сотни перенос 2. 3a-2+2 = 3a = c - однозначное числоПары (a, c) = (1, 3), (2, 6), (3, 9)Из 1) получаем один вариант:3c + 2 = 10 + aПары (a, c) = (1, 3), (4, 4), (7, 5)Подходит только пара a = 1, c = 3, она из пункта 3) б). Значит, b = 5.Ответ: n = 153. Количество цифр 9+180+54*3 = 189+162 = 351.Все правильно.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years