• [tex] \left \{ {{ \sqrt{ x^{2} -2x+1}= 2y-1 }
    \atop {|x|+y^{2}=1 }} ight. [/tex]

Ответы 1

  •  \left \{ {{\sqrt{x^2-2x+1}=2y-1} \atop {|x|+y^2=1}} ight. \;  \left \{ {{\sqrt{(x-1)^2}=2y-1} \atop {|x|+y^2=1}} ight. \;  \left \{ {{|x-1|=2y-1} \atop {|x|+y^2=1}} ight. \\\\ \left \{ {{y=\frac{1}{2}(|x-1|+1)} \atop {|x|+\frac{1}{4}(|x-1|^2+2|x-1|+1)=1}} ight. ,\; \; |a|^2=a^2\\\\x^2-2x+1+2|x-1|+1+4|x|=1\\\\x^2-2x+2|x-1|+4|x|=0\; \; \; \; ----(0)----(1)----\\\\1)\; x \leq 0,\; x^2-2x-2x+2-4x=0,\\\\x^2-8x+2=0,\; D/4=16-2=12,\\\\x_1=4-2\sqrt3>0,\; x_2=4+2\sqrt3>0\\\et\; reshenij2)\; 0<x<=1,x^2-2x-2x+2+4x=0,x^2+2=0,netreshenij,t.k. \; x^2+2>03)\; x>1,\; \; x^2-2x+2x-2+4x=0,\; x^2+4x-2=0,\\\\D/4=4+2=6,\; x_1=-2-\sqrt6<1,\\\\x_2=-2+\sqrt6\approx -2+2,45=0,45<1\\\et\; reshenijВообще. система  имеет смысл при     \left \{ {{x^2-2x+1 \geq 0,} \atop {2y-1 \geq 0,}} ight. \;  \left \{ {{(x-1)^2 \geq 0} \atop {y \geq \frac{1}{2}}} ight. \;  \left \{ {{x\in Z} \atop {y \geq \frac{1}{2}}} ight.
    • Автор:

      sophie
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years