• найдите значение функции : f(x) =(x-1)²+1\x-1, в точке ее минимума

Ответы 1

  • ОДЗ: x-1≠0⇒x≠1f'(x)=((x-1)^2+\frac{1}{x-1})'=2(x-1)-\frac{1}{(x-1)^2}\\2(x-1)-\frac{1}{(x-1)^2}=0\ \ \ \ \ |*(x-1)^2eq0\\2(x-1)^3-1=0\\(x-1)^3=\frac{1}{2}\\x-1=\sqrt[3]{\frac{1}{2}}\\x=\frac{1}{\sqrt[3]2}+1Вложение.x=\frac{1}{\sqrt[3]2}+1 - точка минимумаf(\frac{1}{\sqrt[3]2}+1)=(\frac{1}{\sqrt[3]{2}}+1-1)^2+\frac{1}{\frac{1}{\sqrt[3]{2}}+1-1}=\frac{1}{\sqrt[3]{4}}+\sqrt[3]{2}=\frac{1+2}{\sqrt[3]{4}}=\frac{3}{\sqrt[3]{4}}=f_{min}
    answer img
    • Автор:

      soler
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years