• Составьте уравнения касательной к графику функции y=x^3-2x^2+3x+4 в точке с абсциссой x=2

Ответы 1

  • Функция диференцируема в окрестности точки x_0=2,значит касательная будет выглядеть:

    f_k_a_s=f(x_0)+f'(x_0)(x-x_0)

    Производная функции имеет вид:

    f'(x)=3x^2-4x+3

    f(x_0)=f(2)=2^3-2*2^2+3*2+4=10

    f'(x_0)=f'(2)=3*2^2-4*2+3=7

     

    f_k_a_s=10+7(x-2)=7x-4

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years