1) 7^(7-3x) ≤ (7)^27 > 17 - 3x ≤ 2-3x ≤ 2 - 7- 3x ≤ - 5x ≥ 5/3x ≥ 1(2/3)x ∈[1(2/3) ; + ≈)2) 3^(2x-1) + 3^(2x-2) - 3^(2x-4) = 315(3^2x)* (1/3 + 1/9 - 1/81) = 315(3^2x)/(35/81) = 315(3^2x) = 81*9(3^2x) (3^6)2x = 6x = 33) 5^(3x-7) = 8^[(3x-7)/3]5^(3x-7) = 2^(3x-7)(5/2)^(3x-7) = 1(5/2)^(3x-7) = (5/2)^03x - 7 = 03x = 7x = 7/3x = 2(1/3)4) a) 3*(3^2x) - 10*(3^x) + 3 < 03^x = zz^2 - 10z + 3 = 0D = 100 - 4*3*3 = 641) z = (10 - 8)/6z1 = 1/33^x = 3^(-1)x1 = - 1z = (10 + 8)/6z2 = 33^x = 3x2 = 1 + - + --------------------------------------------------------------------> -1 1 xx ∈(-1;1)b) 4 + 2/(3^x - 1) = 5/(3^(x-1)4*(3^x - 1) + 2 = [15*(3^x - 1)] / (3^x)4*(3^x -1) + 2 = 15 - 15/(3^x)4*(3^x) - 17 - 15*(3^x) = 04*(3^2x) - 17*(3^x) - 15 = 03^x = z> 04*(z^2) - 17z - 15 = 0D = 289 + 4*4*15 = 529z1 = (17 - 23)/8z1 = -6/8z1 = - 2/3 < 0 посторонний кореньz2 = (17+23)/8z2 = 40/8z2 = 53^x = 5x = log_3 (5)