• Найти [tex]\frac{d^2y}{dx^2}[/tex] функции

    [tex]\left \{ {{x=3(t-sint)} \atop {y=4(1-cost})} ight.[/tex]

Ответы 1

  • x=\phi (t);\\ y=\psi (t);\\ y'_x=\frac{\psi'(t)}{\phi'(t)};\\ y''_{x^2}=\frac{\psi''(t)\phi '(t)-\psi'(t)\phi''(t)}{(\phi'(t))^3}

     

    x'_t=3-3cost;\\ x''_{t^2}=3sint;\\ y'_t=4sint;\\ y''_{t^2}=4cost;

     

    y''_{x^2}=\frac{4cost(3-3cost)-4sint *3sint}{(3-3cost)^3}=\\ \frac{12cost-12(cos^2 t+sin^2 t)}{27(1-cost)^3}=\\ \frac{12cost-12*1}{27(1-cost)^3}=\\ \frac{-12(1-cost)}{27(1-cost)^3}=\\ \frac{-4}{9(1-cost)^2}

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years