Ответы 1

    1. В этом задании требуется определить значение тригонометрического выражения cos225° + sin405° + tg420°.
    2. Воспользуемся формулами приведения и таблицей основных значений синуса, косинуса, тангенса и котангенса.
    3. Для вычисления cos225° применим формулу cos(180° + α) = –cosα и cos45° = (√2) / 2. Итак, cos225° = cos(180° + 45°) = –cos45° = –(√2) / 2.
    4. Аналогично, применяя формулу sin(360° + α) = sinα и sin45° = (√2) / 2, получим: sin405° = sin(360° + 45°) = sin45° = (√2) / 2.
    5. Наконец, используя формулу tg(360° + α) = tgα и tg60° = √3, найдем: tg420° = tg(360° + 60°) = tg60° = √3.
    6. Таким образом, cos225° + sin405° + tg420° = –(√2) / 2 + (√2) / 2 + √3 = √3.

    Ответ: √3.

    • Автор:

      artemio
    • 2 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years