• Статья содержит 20000 букв. Каждая буква может быть неверно с вероятностью 0.0004. Какова вероятность того что в статье

Ответы 1

  • Применим распределение Пуассона.Pn(k) = λ^k/k! · e^(-λ);Пусть n = 20000 - число букв в статье;p = 0,0004 - вероятность опечатки в статье;np = λ = 20000 · 0,0004 = 8.Вероятность того, что имеется 0 опечатокP20000(0) = e^(-8) = 0,000335.Вероятность того, что имеется 1 опечатка.P20000(1) = 8^1/ 1! · e^(-8) = 0,00268.Событие A такое, что в статье не менее 2 опечаток противоположно событию B, при котором в статье будет меньше 2 опечаток, только 0 или 1.Вероятность того, что в статье будет меньше 2 опечаток.P(A) = P20000(0) + P20000(1) = 0,000335 + 0,00268 = 0,003015;Вероятность того, что в статье не менее 2 опечаток:P(B) = 1 - P(A) = 1 - 0,003015 ≈ 0,997; Ответ: 0,997.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years