• Из города А в город В, расстояние между которыми 30км, выехал грузовик. Через 10 мин вслед за ним выехал легковой автомобиль,

Ответы 1

  • Допустим, что скорость грузовика равна х км/ч, значит расстояние в 30 км грузовик проедет за 30/х часов.

    По условию задачи скорость легкового автомобиля больше, чем скорость грузовика на 20 км/ч, то есть равна х + 20 км/ч, значит 30 км он проедет за 30/(х + 20) часов.

    Легковой автомобиль выехал на 10 минут позже, а приехал на 5 минут раньше, значит в пути он был на 15 меньше, или на 1/4 часа.

    Таким образом получаем следующее уравнение:

    30/х - 1/4 = 30/(х + 20),

    (120 - х)/4 * х = 30/(х + 20),

    -х² - 20 * х + 2400 = 0.

    Найдём дискриминант данного уравнения:

    (-20)² - 4 * (-1) * 2400 = 10000.

    Так как решение задачи может быть только положительным числом, получаем:

    х = (20 - 100)/-2 = 40 (км/ч) - скорость грузовика.

    40 + 20 = 60 (км/ч) - скорость легкового автомобиля.

    • Автор:

      evaklein
    • 2 года назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years