Предмет:
Другие предметыАвтор:
foster21Ответ:
Давайте розрахуємо значення кожного виразу:
1. \(4 \frac{1}{6} - 3 \frac{3}{6}\):
\[4 \frac{1}{6} - 3 \frac{3}{6} = 4 + \frac{1}{6} - (3 + \frac{3}{6}) = 4 + \frac{1}{6} - 3 - \frac{1}{2} = 1 + \frac{1}{6} - \frac{1}{2} = \frac{1}{6} - \frac{1}{2} = -\frac{1}{3}\]
2. \(7 \frac{2}{6} - 5 \frac{5}{6}\):
\[7 \frac{2}{6} - 5 \frac{5}{6} = 7 + \frac{1}{3} - (5 + \frac{5}{6}) = 7 + \frac{1}{3} - 5 - \frac{5}{6} = 2 + \frac{1}{3} - \frac{5}{6}\]
3. \(1 \frac{5}{6} + \frac{5}{6}\):
\[1 \frac{5}{6} + \frac{5}{6} = 1 + \frac{5}{6} + \frac{5}{6} = 1 + 1 = 2\]
4. \(3 \frac{4}{6} + 3 \frac{3}{6} - 5 \frac{2}{6}\):
\[3 \frac{4}{6} + 3 \frac{3}{6} - 5 \frac{2}{6} = 3 + \frac{2}{3} + 3 + \frac{1}{2} - (5 + \frac{1}{3}) = 6 + \frac{2}{3} + \frac{1}{2} - 5 - \frac{1}{3}\]
Тепер розмістимо ці точки на координатному промені:
1. \(-\frac{1}{3}\) - точка на від'ємній стороні від початку координат.
2. \(2 + \frac{1}{3} - \frac{5}{6}\) - залишається розрахувати, але це буде додатне число.
3. \(2\) - точка на позитивній стороні від початку координат.
4. \(6 + \frac{2}{3} + \frac{1}{2} - 5 - \frac{1}{3}\) - залишається розрахувати, але це буде додатне число.
Розрахуємо значення другого та четвертого виразу і розмістимо точки на відповідних відрізках координатного променя.
Объяснение:
Автор:
brennan574Відповідь:
Давайте розрахуємо значення кожного виразу:
1. \(4 \frac{1}{6} - 3 \frac{3}{6}\):
\[4 \frac{1}{6} - 3 \frac{3}{6} = 4 + \frac{1}{6} - (3 + \frac{3}{6}) = 4 + \frac{1}{6} - 3 - \frac{1}{2} = 1 + \frac{1}{6} - \frac{1}{2} = \frac{1}{6} - \frac{1}{2} = -\frac{1}{3}\]
2. \(7 \frac{2}{6} - 5 \frac{5}{6}\):
\[7 \frac{2}{6} - 5 \frac{5}{6} = 7 + \frac{1}{3} - (5 + \frac{5}{6}) = 7 + \frac{1}{3} - 5 - \frac{5}{6} = 2 + \frac{1}{3} - \frac{5}{6}\]
3. \(1 \frac{5}{6} + \frac{5}{6}\):
\[1 \frac{5}{6} + \frac{5}{6} = 1 + \frac{5}{6} + \frac{5}{6} = 1 + 1 = 2\]
4. \(3 \frac{4}{6} + 3 \frac{3}{6} - 5 \frac{2}{6}\):
\[3 \frac{4}{6} + 3 \frac{3}{6} - 5 \frac{2}{6} = 3 + \frac{2}{3} + 3 + \frac{1}{2} - (5 + \frac{1}{3}) = 6 + \frac{2}{3} + \frac{1}{2} - 5 - \frac{1}{3}\]
Тепер розмістимо ці точки на координатному промені:
1. \(-\frac{1}{3}\) - точка на від'ємній стороні від початку координат.
2. \(2 + \frac{1}{3} - \frac{5}{6}\) - залишається розрахувати, але це буде додатне число.
3. \(2\) - точка на позитивній стороні від початку координат.
4. \(6 + \frac{2}{3} + \frac{1}{2} - 5 - \frac{1}{3}\) - залишається розрахувати, але це буде додатне число.
Розрахуємо значення другого та четвертого виразу і розмістимо точки на відповідних відрізках координатного променя.
Пояснення:
Автор:
cadeaav8Добавить свой ответ
Предмет:
МатематикаАвтор:
sergio58Ответов:
Смотреть
Предмет:
МатематикаАвтор:
brendaОтветов:
Смотреть
Предмет:
Другие предметыАвтор:
jessoahlОтветов:
Смотреть