• Конденсатор ёмкостью 2 мкФ, индуктивность 4 Гн и активное сопротивление 1,9 кОм соединены последовательно. При какой частоте переменного тока в данной цепи будет наблюдаться резонанс. Какая мощность будет выделяться в цепи, если эффективное напряжение будет равно 220 В? Написать уравнения зависимости тока и напряжения от времени.

Ответы 9

  • Прошу прощения, 585 200 Вт - это же 582 с лишним кВт. Вы себе представляете такую мощность, при запитывании от напряжения 220 В? У нас дом 144-квартирный с четырьмя лифтами потребляет меньше! Ну скажите, что Вы пошутили...
  • Сумасшедший дом. Больше не буду браться такое решать... два с лишним часа убил.
    • Автор:

      munoz
    • 5 лет назад
    • 0
  • спасибо
    • Автор:

      bobby
    • 5 лет назад
    • 0
  • Пожалуйста
  • это я перепутал UI с UR
    • Автор:

      addison32
    • 5 лет назад
    • 0
  • Охотно верю. Но физика, в отличие, к примеру, от математики, обычно оперирует явлениями, которые так или иначе взяты из жизни. И в задачах мы вряд ли найдем велосипедиста, едущего со скоростью 2500 км/час, температуру в -5000 градусов Цельсия и т.п. Поэтому, получив ответ, полезно подумать, а возможно ли такое значение в реальности? Очень хорошо страхyет от ошибок и описок разного рода.
    • Автор:

      averiaonm
    • 5 лет назад
    • 0
  • Да, ответ надо оценивать на "ГЛУПОСТЬ".
  • 1)частоту находим из формулы Томпсона: v=1/2п*sqrt LC=57 Гц; 2)Для переменного тока существует аналогичные законы Ома для полного сопротивления: P=U*корень из 2*sqrt (R^2+(wL-1/wC)^2)=220*(3,61*10^6+(1432-1397)^2)=(приблизительно)=1900*220*1.4=585 200 Вт; 3)U=308sin(358t); I=q(t)'=CU/LC*sin(1/LC*t)=0.22sin(358t)
  • 1. Для определения резонансной частоты контура служит формула Томсона.\displaystyle T=2\pi \sqrt{LC} Здесь Т - период колебаний контура, L - индуктивность контура, С - емкость контура.Частота колебаний определяется, как величина, обратная их периоду и окончательно получаем\displaystyle u= \frac{1}{2\pi\sqrt{LC}}= \frac{1}{2\pi\sqrt{4\cdot2\cdot10^{-6}}}\approx 56.3 (Гц)2.Какая мощность будет выделяться в цепи, если эффективное напряжение будет равно 220 В?а) Режим работы в цепи переменного тока зависит от частоты питающего напряжения. Частота не задана, но напряжение 220В - стандартная величина для однофазного питания, поэтому будем в дальнейшем считать, что речь идет о сети питания с промышленной частотой 50 Гц.Определим индуктивное и емкостное сопротивления:\displaystyle X_L=\omega L = 2\piu L=2\pi\cdot50\cdot4\approx 1256.6 \\ X_C= \frac{1}{\omega C}= \frac{1}{2\piu C}=\frac{1}{2\pi\cdot50\cdot2\cdot10^{-6}}\approx 1591.5Модуль полного сопротивления определится по формуле\displaystyle Z= \sqrt{R^2+(X_l-X_c)^2}= \sqrt{1900^2+(1256.6-1591.5)^2}\approx 1929.3Теперь определим полную мощность в цепи:S = U²/Z = 220² / 1929.3 ≈ 25.1 (Вт);б) Но возможно, что речь шла о расчете мощности в режиме резонанса. Тогда все существенно проще. При резонансе в последовательном колебательном контуре его реактивное сопротивление равно нулю и можно производить расчет, как для цепи постоянного тока.S = U²/R = 220² / 1900 ≈ 25.5 (Вт)3. Написать уравнения зависимости тока и напряжения от времени.Снова непонятно, о каком режиме цепи речь. Определим его для режима резонансаU=Um×sin(ωt+φ);Um=220√2 ≈ 311.1 (В).ω=2·π·ν = 2π×56.3 ≈ 353.7φ - некий начальный сдвиг фазы, который можно положить, например, равным нулю.U=311.1sin(353.7·t)Ток в цепи при резонансе чисто активный и находится по закону Ома:I = U/R = 220/1900 ≈ 0.116 (A);Окончательно, переходя к амплитудному значению токаI=0.116√2·sin(353.7·t) ≈ 0.164sin(353.7·t)Расчет токов и напряжений в режиме, отличном от резонансного, насколько я знаю, в школах не проходят, поэтому я также не буду его делать для частоты 50 Гц.
    • Автор:

      brianna
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years