• В момент t = 0 частица выходит из точки x = 0 с некоторой начальной скоростью. Двигаясь по оси x с постоянным ускорением, частица оказывается в точке с координатой x1 (x1 > 0) в моменты времени t1 и t2. В какой момент скорость частицы станет равной по величине начальной скорости? Какой путь пройдет частица к этому моменту?

Ответы 1

  • уравнение скорости частицы: V=v-at; где v -  начальная скорость, a - ускорение. Оно отрицательное, иначе частица не вернулась бы в одну и ту-же точку x1. В одинаковых точках скорость частицы будет отличаться только противоположным направлением, модуль будет одинаковый. Поэтому можно записать:v-at1=at2-v;v=0,5a(t2+t1);a=2v/(t2+t1); нашли ускорение частицы.уравнение движения выглядит так: x=vt-0,5at^2;Найдём время, когда частица будет в начале координат. 0=vt-0,5at^2; подставим найденное значение ускорения. 0=vt-vt^2/(t1+t2); 0=t-t^2/(t1+t2); 0=t-t^2/(t1+t2); t^2-t(t1+t2)=0; t(t-(t1+t2))=0; корень t=0 нас не интересует, это начало движения. t=t1+t2; Через такое время частица вернётся в исходное положение и её скорость по модулю будет равна начальной.За это время частица пройдёт путь:(v(t1+t2)/2-v/(t2+t1)(t1+t2)^2/4)*2=(v(t1+t2)/2-v(t1+t2)/4)*2=v(t1+t2)/2;
    • Автор:

      wolfie
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years