y= H-g*t^2/2y(t(p))=0t(p)=√(2H/g) - время падения в раствор t=0.08с t(x)=t(p)-t y(t(x))=1cm=0,01my= H-g*t(x)^2/2y= H-g*t(x)^2/2=y= H-g*(t(p)-t)^2/2=H-g/2*(t(p)^2-2t(p)*t+t^2)^2=H-g/2*(2H/g-2√(2H/g)*t+t^2)^2= H-H+g√(2H/g)*t- g*t^2/2=√(2Hg)*t - g*t^2/2y=√(2Hg)*t - g*t^2/2√(2Hg)*t=y+g*t^2/2√(2Hg)=(2y+g*t^2)/(2*t)2Hg=(2y+g*t^2)^2/(4*t^2)H=(2y+g*t^2)^2/(8*g*t^2)H=(2*0,01m+10m/c^2 * (0.08c)^2)^2/(8*10m/c^2 *(0.08c)^2)=(0,084m)^2/0,512m=0,014m = 1,4cmP.S. по моему я где то лажанулась 2 вариант t=0.08с t(x)=t(p)-t = √(2H/g) - ty(t(x))=1cm=0,01my= H-g*t(x)^2/2y= H-g*t(x)^2/2g*t(x)^2/2=H-yt(x)^2= 2*(H-y)/g(√(2H/g) - t)^2=2*H/g -2*y/g2H/g -2t√(2H/g)+t^2=2*H/g -2*y/g2t√(2H/g)=t^2+2*y/g√(2H/g)=t/2+y/(gt)2H/g=(t/2+y/(gt))^2=t^2/4 +y/g+ y^2/(gt)^2H=gt^2/8 +y/2+ y^2/(2gt^2)H=10m/c^2 * (0.08c)^2/8+ 0,01m/2+ (0,01m)^2/(2*10m/c^2 * (0.08c)^2)=0,008m+0,005m+0,00078125m=0,01378125=1,4cm