• скейтборд массой М=500 г находиться на горизонтальной поверхности. На одном конце скейтборда в точке А сидит лягушка.С какой наименьшей скоростью она должна прыгнуть, чтобы попасть в точку В на скейтборде, отстоящую на l=26 см от точки А? Масса лягушки m=150 г. Трением между скейтбордом и поверхностью пренебречь.

     

Ответы 1

  • По закону сохранения импульса:

    mv0*cosa = MV  (в проекциях на горизонтальную ось).

    Скорость скейтборда направлена навстречу движению лягушки и равна:

    V=\frac{m}{M}v_{0}cosa.

    (a - угол прыжка лягушки к горизонту).

    Дальность полета лягушки вычислим из уравнений кинематики для тела, брошенного под углом к горизонту:  (t(полета) = 2(tподъема)=2t)

    2v_{0}cosa*t=S;

    v_{0}sina=gt.

    Учтем, что за время полета лягушки скейт приблизится к ней на расстояние 2Vt, то есть:

    S = l - 2Vt.

    В результате получим:

    l\ =\ 2v_{0}cosa*(1+\frac{m}{M})*\frac{v_{0}sina}{g}=\frac{v_{0}^2sin2a}{g}(1+\frac{m}{M}).

    Чтобы скорость была минимальной, sin2a должен равняться 1. То есть лягушка должна прыгнуть под углом 45 гр. Теперь выражаем скорость:

    v_{0}=\sqrt{\frac{l*M*g}{M+m}}\ =\ \sqrt{\frac{0,26*0,5*10}{0,65}}\ =\ 1,4\ \frac{m}{c}.

    Ответ: 1,4 м/с, под углом в 45 град.

    • Автор:

      petersen
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years